Abstract

Algorithms for mobile robotic systems are generally implemented on purely digital computing platforms. Developing alternative computational platforms may lead to more energy-efficient and responsive mobile robotics. Here, we report a hybrid analog-digital computing platform enabled by memristors on a mobile inverted pendulum robot. Our mobile robotic system can tune the conductance states of memristors adaptively using a model-free optimization method to achieve optimal control performance. We implement sensor fusion and the motion control algorithms on our hybrid analog-digital computing platform and demonstrate more than one order of magnitude enhancement of speed and energy efficiency over traditional digital platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.