Abstract
As the variety of hazardous packet payload contents increases, the intrusion detection system (IDS) should be able to detect numerous patterns in real time. For this reason, this paper proposes an Aho-Corasick algorithm based parallel string matching. In order to balance memory usage between homogeneous finite-state machine (FSM) tiles for each string matcher, an optimal set of bit position groups is determined. Target patterns are sorted by binary-reflected gray code (BRGC), which reduces bit transitions in patterns mapped onto a string matcher. In the evaluations of Snort rules, the proposed string matching outperforms the existing bit-split string matching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.