Abstract

Bi-level optimization problems are a class of challenging optimization problems, that contain two levels of optimization tasks. In these problems, the optimal solutions to the lower level problem become possible feasible candidates to the upper level problem. Such a requirement makes the optimization problem difficult to solve, and has kept the researchers busy towards devising methodologies, which can efficiently handle the problem. In recent decades, it is observed that many efficient optimizations using modern advanced EAs have been achieved via the incorporation of domain specific knowledge. In such a way, the embedment of domain knowledge about an underlying problem into the search algorithms can enhance properly the evolutionary search performance. Motivated by this issue, we present in this paper a Memetic Evolutionary Algorithm for Bi-level Combinatorial Optimization (M-CODBA) based on a new recently proposed CODBA algorithm with transfer learning to enhance future bi-level evolutionary search. A realization of the proposed scheme is investigated on the Bi-CVRP and Bi-MDVRP problems. The experimental studies on well established benchmarks are presented to assess and validate the benefits of incorporating knowledge memes on bi-level evolutionary search. Most notably, the results emphasize the advantage of our proposal over the original scheme and demonstrate its capability to accelerate the convergence of the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.