Abstract
This article addresses the Production Routing Problem (PRP), which consists of determining, in an integrated way, production and inventory planning, and vehicle routing to minimize the costs involved. In the problem, a plant is responsible for producing several types of products to meet the known demand of a set of customers using a homogeneous fleet of vehicles over the planning horizon. In the literature, evolutionary approaches have not been explored in depth for the PRP, specifically for the problem with multiple products. Thus, this work mitigates this gap, presenting a novel Memetic Algorithm and testing its effectiveness on randomly generated sets of instances, comparing the results obtained with a commercial optimization solver. In our solution approach, several classic operators from the literature were implemented. Furthermore, we propose four novel genetic operators. In addition, we evaluated the proposed method’s performance in classical instances of literature considering a single item. The computational experiments were carried out to assess the impact of the numerous parameter combinations involving the metaheuristic, and, from statistical analyses, we evidence the proposed technique’s robustness. Computational experiments showed that our proposed method outperforms the commercial solver Gurobi in determining feasibly high-quality solutions, mainly on large instances for the PRP with multiple items.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.