Abstract

In order to minimize costs, manufacturing companies have been relying on assembly lines for the mass production of commodity goods. Among other issues, the successful operation of an assembly line requires balancing work among the stations of the line in order to maximize its efficiency, a problem known in the literature as the assembly line balancing problem, ALBP.In this work, we consider an ALBP in which task assignment and equipment decisions are jointly considered, a problem that has been denoted as the robotic ALBP. Moreover, we focus on the case in which equipment has different costs, leading to a cost-oriented formulation. In order to solve the problem, which we denote as the cost-oriented robotic assembly line balancing problem, cRALBP, a hybrid metaheuristic is proposed. The metaheuristic embeds results obtained for two special cases of the problem within a genetic algorithm in order to obtain a memetic algorithm, applicable to the general problem. An extensive computational experiment shows the advantages of the hybrid approach and how each of the components of the algorithm contributes to the overall ability of the method to obtain good solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.