Abstract

In existing scheduling models, the flexible job-shop scheduling problem mainly considers machine flexibility. However, human factor is also an important element existing in real production that is often neglected theoretically. In this paper, we originally probe into a multi-objective flexible job-shop scheduling problem with worker flexibility (MO-FJSPW). A non-linear integer programming model is presented for the problem. Correspondingly, a memetic algorithm (MA) is designed to solve the proposed MO-FJSPW whose objective is to minimise the maximum completion time, the maximum workload of machines and the total workload of all machines. A well-designed chromosome encoding/decoding method is proposed and the adaptive genetic operators are selected by experimental studies. An elimination process is executed to eliminate the repeated individuals in population. Moreover, a local search is incorporated into the non-dominated sorting genetic algorithm II. In experimental phase, the crossover operator and elimination operator in MA are examined firstly. Afterwards, some extensive comparisons are carried out between MA and some other multi-objective algorithms. The simulation results show that the MA performs better for the proposed MO-FJSPW than other algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call