Abstract

This paper addresses a scheduling problem motivated by scheduling of diffusion operations in the wafer fabrication facility. In the target problem, jobs arrive at the batch machines at different time instants, and only jobs belonging to the same family can be processed together. Parallel batch machine scheduling typically consists of three types of decisions—batch forming, machine assignment, and batch sequencing. We propose a memetic algorithm with a new genome encoding scheme to search for the optimal or near-optimal batch formation and batch sequence simultaneously. Machine assignment is resolved in the proposed decoding scheme. Crossover and mutation operators suitable for the proposed encoding scheme are also devised. Through the experiment with 4860 problem instances of various characteristics including the number of machines, the number of jobs, and so on, the proposed algorithm demonstrates its advantages over a recently proposed benchmark algorithm in terms of both solution quality and computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.