Abstract

The photoelectrochemical (PEC) self-powered system has attracted great attention in disease detection. The determination of a simple and efficient approach for disease-related biomarkers is highly interesting and appealing. Herein, an ingenious visible light-induced membraneless self-powered PEC biosensing platform was constructed, integrating a signal amplification strategy for ultrasensitive split-type PEC bioanalysis. The system was comprised of a Bi2S3/BiPO4 heterojunction photoanode and a platinum (Pt) cathode in a one compartment chamber. An alkaline phosphatase (ALP)-loaded sandwich immunoassay was used to generate the signal reporter ascorbic acid (AA) in a 96-well plate, and myoglobin (Myo) was used as a model protein. In the presence of AA, ferrocene (Fc), and Tris (2-carboxyethyl) phosphine (TCEP), the chemical-chemical redox cycling scheme was operated upon the initial oxidation of Fc by the holes in the Bi2S3/BiPO4 photoelectrode, and Fc was regenerated from Fc+ by AA. Subsequently, AA was regenerated by TCEP after its oxidation, and cycling was triggered. As a result, the proposed self-powered PEC sensing exhibited excellent performance with a wide linear range from 5.0 × 10−13 to 1.0 × 10−7 g/mL, and a low detection limit of 2.0 × 10−13 g/mL for Myo. This work provided a new design of a redox cycling strategy in the self-powered PEC biosensor, and showed an effective approach for the clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.