Abstract

Transport of lipids and proteins is a highly regulated process, which is required to maintain the integrity of various intracellular organelles in eukaryotic cells. Mutations along the yeast secretory pathway repress transcription of rRNA, tRNA, and ribosomal protein genes. Here, we show that these mutations also lead to a rapid and specific attenuation of translation initiation that occurs prior to the transcriptional inhibition of ribosomal components. Using distinct vesicular transport mutants and chlorpromazine, we have identified the eIF2alpha kinase Gcn2p and the eIF4E binding protein Eap1p as major mediators of the translation attenuation response. Finally, in chlorpromazine-treated cells, this response does not require Wsc1p or the protein kinase Pkc1p, both of which are upstream of the transcriptional repression of ribosomal components. Altogether, our results suggest that yeast cells not only evolved a transcriptional but also a translational control to assure efficient attenuation of protein synthesis when membranes are stressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call