Abstract

A simple membrane-based purification process for cell culture-derived influenza virus was established that relies on only two chromatographic unit operations to achieve the contamination limits required according to regulatory authorities. After clarification and concentration, a pseudo-affinity membrane adsorber (sulfated cellulose, SCMA) was applied for virus capture. The subsequent polishing step consisted of a salt-tolerant anion exchange membrane adsorber (STMA) to bind residual DNA. For the presented process neither a buffer exchange step nor a nuclease step for further DNA digestion were required. As a starting point, a two-salt strategy (including a polyvalent ion) was employed to screen STMA conditions in a 96-well plate format. After optimization on chromatographic laboratory scale, the virus recovery was up to 97% with a residual DNA level below 0.82%. In addition, the STMA was characterized regarding its dynamic binding capacity and the impact of flow rate on yields and contamination levels. Overall, the total virus yield for influenza virus A/PR/8/34 (H1/N1) of this two-step membrane process was 75%, while the protein and the DNA contamination level could be reduced to 24% and at least 0.5%, respectively. With 19.8μg protein and 1.2ng DNA per monovalent dose, this purity level complies with the limits of the European Pharmacopeia for cell culture-derived vaccines for human use. Overall, the presented downstream process might serve as a generic and economic platform technology for production of cell culture-derived viruses and viral vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.