Abstract

Towards an efficient, low-cost solution to the problem of contamination of groundwater by selenium leached out from earth's mineral crust, a new system is developed using a novel graphene-based nanocomposite membrane. The system not only purified selenium-contaminated groundwater with high degree but also ensured safe disposal of the rejected selenium through algorithmic chemical stabilization in a mineral matrix. All experiments were conducted with live contaminated water from selenium affected area rather than using synthetic solution in a semi-pilot unit involving a largely fouling-free flat sheet cross-flow membrane module. Pure water flux of up to 190 Lm−2h−1(LMH) with 96–97% selenium rejection at an optimum operating pressure of only 14 bar could be achieved. Rejected selenium was stabilized in mineral matrix through chemical coagulation-precipitation using suitable coagulants following prior optimization of the critical operating parameters by Model-based calibration toolbox (MATLAB R2020a). A high degree of stabilization efficiency (99.8%) could be achieved as reflected in an error-index of only 1.13%. For selenium-affected region, the membrane-integrated hybrid treatment system proved to be a potential candidate technology offering safe drinking water at an approximate cost of only 1.77 $/m3 which was found to be affordable to the consumers in subsequent willingness to pay survey.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call