Abstract
In Xenopus laevis embryos, the Wingless/Wnt-1 subclass of Wnt molecules induces axis duplication, whereas the Wnt-5A subclass does not. This difference could be explained by distinct signal transduction pathways or by a lack of one or more Wnt-5A receptors during axis formation. Wnt-5A induced axis duplication and an ectopic Spemann organizer in the presence of hFz5, a member of the Frizzled family of seven-transmembrane receptors. Wnt-5A/hFz5 signaling was antagonized by glycogen synthase kinase-3 and by the amino-terminal ectodomain of hFz5. These results identify hFz5 as a receptor for Wnt-5A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.