Abstract

For lithium–sulfur batteries, 3D cathodes might be of interest for containing the active material and trapping the polysulfides during cycling, owing to their binder-free and freestanding features. In this work, the MoS2 grown on the 3D structured Carbon Cloth (CC@MoS2) is firstly used to fabricate the Li–S battery and the sulfur loading can be freely tuned by adjusting thermal annealing time at 200 °C. A two-step melt-diffusion strategy is reported for fabrication of cathodes, which involves in melting and diffusion of sulfur covered by CC@MoS2 composites instead of dissolution of sulfur in the toxic organic solvents. Compared with the non-polar carbon cloth, the CC@MoS2 composites exhibit better adsorption capacity for polysulfides due to more edge active sites, which could effectively facilitate polysulfide redox kinetics. The SEM images of the CC@MoS2 cathode after 300 cycles show that MoS2 can still maintain the nanosheet morphology. After 300 cycles at 0.5 C, the CC@MoS2 cathodes loaded with 2 mg sulfur exhibit a better reversible capacity of 698 mA h g−1 compared with CC@MoS2 loaded with 1 mg sulfur (604 mA h g−1) and CC@MoS2 loaded with 4 mg sulfur (420 mA h g−1). This work proposes an environmentally friendly method to fabricate the lithium–sulfur battery cathode material and the sulfur loading can be freely adjusted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.