Abstract
A reliable medium-term bioassay system for rapid detection of carcinogenic potential of chemicals in the human environment has been developed. The 8-week-protocol consists of 2 stages; male F344 rats are given a single intraperitoneal injection of diethylnitrosamine (200 mg/kg) for initiation of liver carcinogenesis, followed by a 6-week test chemical treatment starting 2 weeks thereafter. Test chemicals are usually given in the diet or the drinking water and in the 2nd week of test chemical treatment, all rats are subjected to two-thirds partial hepatectomy in order to induce regenerative cell replication. The end-point marker is the glutathione S-transferase placental form (GST-P)-positive hepatic focus, the numbers and sizes of which are analyzed using an image-analyzer and expressed as values per unit liver section (1 cm2). When the yield of GST-P-positive foci is significantly enhanced (P<0.05) over the control value, a chemical is judged to possess carcinogenic or promotion potential for the liver. Among 313 chemicals already tested in this system in our laboratory, 30/31 (97%) mutagenic hepatocarcinogens and 29/33 (88%) non-mutagenic hepatocarcinogens gave positive results. Ten out of 43 (23%) agents known to be carcinogenic in organs other than the liver were also positive. It is particularly important that only one of 48 non-carcinogens gave a very weak positive result, so that the system has a very low false-positivity rate. It is now well documented that the assay system is highly effective for detecting hepatocarcinogens, bridging the gap between traditional long-term carcinogenicity tests and short-term screening assays. At the Fourth International Conference on Harmonization, our medium-term liver bioassay based on an initiation and promotion protocol was recommended in the guidelines as an acceptable alternative to the long-term rodent carcinogenicity test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.