Abstract

BackgroundBehavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions. In order to investigate the genetic control of these traits as well as their relationships with production traits, a study was undertaken on a large second generation cross (F2) between two lines of Japanese Quail divergently selected on their social reinstatement behavior. All the birds were measured for several social behaviors (social reinstatement, response to social isolation, sexual motivation, aggression), behaviors measuring the emotional reactivity of the birds (reaction to an unknown object, tonic immobility reaction), and production traits (body weight and egg production).ResultsWe report the results of the first genome-wide QTL detection based on a medium density SNP panel obtained from whole genome sequencing of a pool of individuals from each divergent line. A genetic map was constructed using 2145 markers among which 1479 could be positioned on 28 different linkage groups. The sex-averaged linkage map spanned a total of 3057 cM with an average marker spacing of 2.1 cM. With the exception of a few regions, the marker order was the same in Japanese Quail and the chicken, which confirmed a well conserved synteny between the two species. The linkage analyses performed using QTLMAP software revealed a total of 45 QTLs related either to behavioral (23) or production (22) traits. The most numerous QTLs (15) concerned social motivation traits. Interestingly, our results pinpointed putative pleiotropic regions which controlled emotional reactivity and body-weight of birds (on CJA5 and CJA8) or their social motivation and the onset of egg laying (on CJA19).ConclusionThis study identified several QTL regions for social and emotional behaviors in the Quail. Further research will be needed to refine the QTL and confirm or refute the role of candidate genes, which were suggested by bioinformatics analysis. It can be hoped that the identification of genes and polymorphisms related to behavioral traits in the quail will have further applications for other poultry species (especially the chicken) and will contribute to solving animal welfare issues in poultry production.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-014-1210-9) contains supplementary material, which is available to authorized users.

Highlights

  • Behavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions

  • In a previous study [9], we used a second generation (F2) cross between two lines of quail divergently selected for their social reinstatement [6] to estimate the genetic parameters of social motivation and its relationships with other important behaviors and production traits

  • This has been demonstrated at the molecular level, as QTLs were detected for the duration of tonic immobility in the chicken [10] and in Japanese Quail [11,12], for emotional reactivity in open-field [13] and for the propensity to receive or perform feather pecking [14,15] in the chicken

Read more

Summary

Introduction

Behavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions. In order to investigate the genetic control of these traits as well as their relationships with production traits, a study was undertaken on a large second generation cross (F2) between two lines of Japanese Quail divergently selected on their social reinstatement behavior. Recoquillay et al BMC Genomics (2015) 16:10 the LSR line [8] These results highlight the importance of social motivation as a factor contributing to the ability of a bird to adapt to modern breeding conditions. In a previous study [9], we used a second generation (F2) cross between two lines of quail divergently selected for their social reinstatement [6] to estimate the genetic parameters of social motivation and its relationships with other important behaviors (such as aggression, sexual motivation, emotional reactivity) and production traits. It was later shown that chickens with alternative homozygous genotypes at the Growth locus differed in several emotional and social reactions [17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call