Abstract

The electrochemistry of the Pu(IV)/Pu(III) couple in 1 M sulphuric acid solution was studied on bare and modified platinum electrodes by cyclic voltammetry and electrochemical impedance spectroscopy. The platinum electrode was separately modified with single-walled carbon nanotubes (SWCNT-Pt) and polyaniline (PANI-Pt). The modified electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray fluorescence (EDXRF). Electrocatalysis of the Pu(IV)/Pu(III) redox reaction was observed on both SWCNT-Pt and PANI-Pt. However, PANI-Pt showed better catalytic action for the electron transfer reaction of the Pu(IV)/Pu(III) couple. The Pu(IV)/Pu(III) couple showed quasi-reversible electron transfer behavior on a bare platinum electrode because of the PtO layer formation by the Pu(IV) solution at the electrode–electrolyte interface. In SWCNT-Pt, the direct interaction between Pu(IV) and platinum was blocked by SWCNTs and it diminished the oxide layer formation at the interface. The lower charge transfer resistance at SWCNT-Pt also promoted the rate of electron transfer reaction of the Pu(IV)/Pu(III) couple. Electrocatalysis of the Pu(IV)/Pu(III) couple on PANI-Pt was attributed to the cumulative effect of the Donnan interaction between the PANI and Pu(IV) anionic complex, specific adsorption of Pu(IV) on the reactive centres, low charge transfer resistance across the electrode–electrolyte interface and a catalytic chemical reaction coupled with the electron transfer reaction. To the best of our knowledge, this paper presents the first evidence of the electrocatalysis of actinides on SWCNT and PANI modified electrodes along with the detailed investigations of their electrocatalysis mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.