Abstract
The oxidative degradation of phenothiazine derivatives (PTZ) by manganese(III) was studied in the presence of a large excess of manganese(III)-pyrophosphate (P2O7 2−), phosphate (PO4 3−), and H+ ions using UV–vis. spectroscopy. The first irreversible step is a fast reaction between phenothiazine and manganese pyrophosphate leading to the complete conversion to a stable phenothiazine radical. In the second step, the cation radical is oxidized by manganese to a dication, which subsequently hydrolyzes to phenothiazine 5-oxide. The reaction rate is controlled by the coordination and stability of manganese(III) ion influenced by the reduction potential of these ions and their strong ability to oxidize many reducing agents. The cation radical might also be transformed to the final product in another competing reaction. The final product, phenothiazine 5-oxide, is also formed via a disproportionation reaction. The kinetics of the second step of the oxidative degradation could be studied in acidic phosphate media due to the large difference in the rates of the first and further processes. Linear dependences of the pseudo-first-order rate constants (k obs) on [MnIII] with a significant non-zero intercept were established for the degradation of phenothiazine radicals. The rate is dependent on [H+] and independent of [PTZ] within the excess concentration range of the manganese(III) complexes used in the isolation method. The kinetics of the disproportionation of the phenothiazine radical have been studied independently from the further oxidative degradation process in acidic sulphate media. The rate is inversely dependent on [PTZ+.], dependent on [H+], and increases slightly with decreasing H+ concentration. Mechanistic consequences of all these results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.