Abstract
A mechanistic study into Protein A chromatographic resin lifetime limitations is presented. Binding and mass transport properties of two widely used agarose-based Protein A resins were studied to distinguish between the roles of resin fouling due to product/impurity build-up and ligand degradation as contributory factors towards the decline in binding capacity with use. Cycling studies were conducted with and without product loading on the columns to separate out the influence of resin fouling. Ligand degradation under the mildly alkaline conditions used for column regeneration was determined to be the primary cause for Protein A resin capacity decline with usage. The use of lower concentrations of caustic and the use of stabilizing excipients to protect the Protein A ligand during cleaning and sanitization were found to be useful techniques in maintaining column performance. The results presented in this paper provide a clearer understanding of the causative factors that limit Protein A chromatographic resin lifetime. It is anticipated that these findings will assist in the development of more robust and economical downstream manufacturing processes for monoclonal antibody and Fc fusion protein purification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.