Abstract

Type 2 diabetes (T2D) is a highly prevalent metabolic disease, affecting nearly 10% of the American population. Although the etiopathogenesis of T2D remains poorly understood, advances in DNA sequencing technologies have allowed for sophisticated interrogation of the human microbiome, providing insight into the role of the gut microbiome in the development and progression of T2D. An emerging body of research reveals that gut-brain axis (GBA) perturbations and a high-fat diet (HFD), along with other modifiable and nonmodifiable risk factors, contribute to gut microbiome homeostatic imbalance. Homeostatic imbalance or disruption increases gut wall permeability and facilitates translocation of endotoxins (lipopolysaccharides) into the circulation with resultant systemic inflammation. Chronic, low-grade systemic inflammation ensues with pro-inflammatory pathways activated, contributing to obesity, insulin resistance (IR), pancreatic β-cell decline, and, thereby, T2D. While GBA perturbations and HFD are implicated in provoking these conditions, prior mechanistic models have tended to examine HFD and GBA pathways exclusively without considering their shared pathways to T2D. Addressing this gap, this article proposes a mechanistic model informed by animal and human studies to advance scientific understanding of (1) modifiable and nonmodifiable risk factors for gut microbiome homeostatic disruption, (2) HFD and GBA pathways contributing to homeostatic disruption, and (3) shared GBA and HFD pro-inflammatory pathways to obesity, IR, β-cell decline, and T2D. The proposed mechanistic model, based on the extant literature, proposes a framework for studying the complex relationships of the gut microbiome to T2D to advance study in this promising area of research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.