Abstract

This paper is devoted to the building of a model for the ignition and growth of a detonation in pressed solid explosives. The ignition model describes the various phenomena occurring at the microscopic scale during viscoplastic pore collapse. The growth stage is represented by a model combining inner combustion inside the pores and outer combustion on the surface of the grains. These microscopic models are incorporated into a macroscopic one. The macroscopic model reproduces waves propagation and takes into account the various couplings between the microscopic and macroscopic scales. Pores and grain size distributions are also considered. The governing equations are solved using a shock tracking high resolution scheme, in order to avoid numerical smearing of the shock front. The role of microscopic topology of the explosive is investigated. Results are validated on pressure gauge records and shock to detonation transition distance (Pop-plots).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.