Abstract

Cyclin-dependent kinases (CDKs) are presumed to control the cell cycle by phosphorylating a large number of proteins involved in S-phase and mitosis, two mechanistically disparate biological processes. While the traditional qualitative model of CDK-mediated cell cycle control relies on differences in inherent substrate specificity between distinct CDK-cyclin complexes, they are largely dispensable according to the opposing quantitative model, which states that changes in the overall CDK activity level promote orderly progression through S-phase and mitosis. However, a mechanistic explanation for how such an activity can simultaneously regulate many distinct proteins is lacking. New evidence suggests that the CDK-dependent phosphorylation of ostensibly very diverse proteins might be achieved due to underlying similarity of phosphorylation sites and of the biochemical effects of their phosphorylation: they are preferentially located within intrinsically disordered regions of proteins that are components of membraneless organelles, and they regulate phase separation. Here, we review this evidence and suggest a mechanism for how a single enzyme’s activity can generate the dynamics required to remodel the cell at mitosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.