Abstract
Rotary ultrasonic machining (RUM) has been proven to be an effective method for surface grinding of carbon fiber reinforced plastic (CFRP) composites. Cutting force is considered as the main criterion to evaluate the performance of RUM surface grinding process. The cutting force modeling is essential to better understand such a process. All reported cutting force models for RUM of CFRP are developed based on brittle fracture material removal mode (brittle mode). However, it is recently found that both ductile material removal mode (ductile mode) and brittle mode exist in RUM of CFRP. Among surface grinding processes, edge surface grinding is the mandatory and primary process to remove an amount of composite material from the workpiece edge to achieve the desired workpiece with high precision. In edge surface grinding process, cutting forces in both feeding direction and in depth-of-cut direction (being perpendicular to feeding direction) play important roles in material removal. In addition, the understandings of material removal mechanisms will greatly benefit the modeling development of cutting forces and improve the RUM process. In this study, a mechanistic model based on both ductile mode and brittle mode is developed to predict cutting forces in both feeding and depth-of-cut directions for RUM edge surface grinding of CFRP composites. A series of experiments are conducted to verify this mechanistic model. The model prediction agrees well with the experimental results under different groups of input variables.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.