Abstract

Light olefin selectivity in methanol-to-hydrocarbons conversion on MFI increases with an increase in crystallite size because intra-crystalline residence time of methylbenzenes increases as a consequence of increased transport restrictions, which enables these methylbenzenes to undergo multiple methylation/dealkylation reactions before exiting the crystal. Selectivity toward light olefins, for the reaction of dimethyl ether (DME) at 623K, increased monotonically from 22% in 2nm-MFI (∼2nm crystallites) to 47% in 17μm-MFI (∼17μm crystallites) at 46–59% net DME conversion. Transport restrictions were introduced externally in a conventional MFI sample (500nm-MFI) by single-/multi-cycle silylation using tetraethyl orthosilicate. Light olefin selectivity, for the reaction of DME at 623K and at 46–59% net DME conversion, increased from 33% in the conventional MFI sample to 49% in a sample that had undergone three silylation treatments. Adsorption uptake measurements of 2,2-dimethylbutane were used to estimate the “effective” crystallite size of the silylated MFI samples. Total light olefin selectivity and ethene/(2-methyl-2-butene+2-methylbutane) increased monotonically with the effective crystallite size for all zeolite samples used in this study, irrespective of their provenance, thereby suggesting that the mechanistic basis for increase in light olefin selectivity with increasing crystallite size is the enhanced propagation of aromatics-based catalytic cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.