Abstract
Most phenotypes of aging in vertebrates may be caused by a progressive decline in the ability of antioxidant defences to maintain cellular and systemic homeostasis. This is due both to a diminished efficacy of those defences and to an enhanced level of pro-oxidant toxicity; the imbalance between the two has been termed oxidative stress. However, the cause of this increasing imbalance remains obscure. This article proposes a mechanism by which spontaneously mutant mitochondrial DNA (mtDNA), despite being present only in very small quantities in the body, may be the main generator of oxidative stress. Mutant mtDNA is distributed very unevenly within a tissue: some cells apparently contain no wild-type mtDNA whatever. Those cells must rely on glycolysis for ATP production; furthermore, they require a system to stabilize their NAD+/NADH ratio. This can only be achieved by an efflux of electrons from the cell, most probably mediated by the plasma membrane oxidoreductase (PMOR). It is proposed that the required rate of electron efflux from these anaerobic cells exceeds the local electron-accepting capacity of "safe" acceptors in plasma such as dehydroascorbate, with the result that reactive species, such as Superoxide, are formed. This leads to increased oxidation of lipids in the plasma, notably of low-density lipoprotein (LDL) particles, which are subsequently imported into mitochondrially healthy cells. This oxidized lipoprotein must be destroyed by the recipient cells' antioxidant defences. That task diverts the cell from the degradation of pro-oxidants that it is itself generating; thus, it imposes oxidative stress on the cell. As the number of anaerobic cells in the body rises, so does oxidative stress in all cells. The consistency of this hypothesis with known facts is discussed, and technically feasible tests are suggested both of the proposed mechanism and of its overall contribution to mammalian aging, including plausible interventions to retard the process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.