Abstract

We propose a mechanism for the growth of crystalline anodic titanium-oxide (ATO) nanochannel arrays based on thermodynamic considerations and structural imperfections. Both amorphous and crystalline ATO films were obtained from the anodization of a titanium foil. Amorphous ATO nanotubes have a single-layer form, which makes them inefficient for use in photo-catalytic and solar-cell applications. Annealed ATO nanotubes are considered non-stoichiometric if the effect of oxygen partial pressure on the composition is significant. The driving force behind growing crystalline ATO nanotubes is the drawing of oxygen from the atmosphere to the oxygen site, which consequently decreases the concentration of oxygen vacancies in the anatase phase. The small ionization energies of titanium ions produce the stoichiometric defects. A diagram showing Gibbs energy and Kroger–Vink notation to indicate the strong influence of the non-stoichiometric ATO structure is deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.