Abstract
We describe an example of a robust heteroclinic network for which nearby orbits exhibit irregular but sustained switching between the various sub-cycles in the network. The mechanism for switching is the presence of spiralling due to complex eigenvalues in the flow linearized about one of the equilibria common to all cycles in the network. We construct and use return maps to investigate the asymptotic stability of the network, and show that switching is ubiquitous near the network. Some of the unstable manifolds involved in the network are two-dimensional; we develop a technique to account for all trajectories on those manifolds. A simple numerical example illustrates the rich dynamics that can result from the interplay between the various cycles in the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.