Abstract
The evolution of the northern hemispheric climate during the last glacial period was shaped by two prominent signals of glacial climate variability known as Dansgaard-Oeschger cycles and Heinrich events. Dansgaard- Oeschger cycles are characterised by a period of rapid, decadal warming of up to 14°C in the high northern latitudes, followed by a more gradual cooling spanning several centuries. Temperature reconstructions from ice cores indicate a dominant recurrence interval of ∼1,500 years for Dansgaard-Oeschger cycles. Heinrich events are quasi-episodic iceberg discharge events from the Laurentide ice sheet into the North Atlantic. The paleo record places most Heinrich events into the cold phase of the millennial-scale Dansgaard-Oeschger cycles. However, not every Dansgaard-Oeschger cycle is accompanied by a Heinrich event, revealing a complex interplay between the two prominent modes of glacial variability that remains poorly understood to this day. Here, we present simulations with a coupled ice sheet-solid earth model to introduce a new mechanism that explains the synchronicity between Heinrich events and the cooling phase of the Dansgaard-Oeschger cycles. Unlike earlier studies, our proposed mechanism does not require a trigger mechanism during the cooling phase. Instead, the atmospheric warming signal associated with the interstadial phase of the Dansgaard-Oeschger cycle causes enhanced ice stream thickening such that a critical ice thickenss and temperature threshold is reached faster, triggering the Heinrich event during the early cooling phase of the Dansgaard-Oeschger cycle. An advantage of our mechanism in comparison to previous theories is that it is not restricted to marine-terminating ice streams, but applies equally to land-terminating ice streams that only become marine-terminating during the actual Heinrich event. Our simulations demonstrate that this mechanism is able to reproduce the Heinrich event characteristics as known from the paleo record under a wide range of forcing scenarios and provides a simple explanation for the observational evidence of synchronous Heinrich events from different ice streams within the Laurentide ice sheet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.