Abstract

Although glycoconjugate vaccines have provided enormous health benefits globally, they have been less successful in significant high-risk populations. Exploring novel approaches to the enhancement of glycoconjugate effectiveness, we investigated molecular and cellular mechanisms governing the immune response to a prototypical glycoconjugate vaccine. In antigen-presenting cells, a carbohydrate epitope is generated upon endolysosomal processing of group B streptococcal type III polysaccharide coupled to a carrier protein. In conjunction with a carrier protein-derived peptide, this carbohydrate epitope binds to major histocompatibility class II (MHCII) and stimulates carbohydrate-specific CD4+ T-cell clones to produce interleukins 2 and 4—cytokines essential for providing T-cell help to antibody-producing B cells. An archetypical glycoconjugate vaccine constructed to maximize the presentation of carbohydrate epitopes recognized by T cells is 50–100 times more potent and significantly more protective in an animal model of infection than is a currently used vaccine construct.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call