Abstract

We employ ab initio electronic structure calculations to obtain two structural models for copper bound in the strongest binding site of the noninfectious form of the prion protein. The models are compatible with available experimental constraints from electron spin resonance data. The bending of the peptide backbone attendant with the copper binding is not compatible with the requisite straight β-strand backbone structure for the same sequence contained in two recently proposed models of the prion protein structure in its infectious form. We hypothesize that copper binding at this site is protective against conversion to the infectious form, discuss experimental data that appear to support and conflict with our hypothesis, and propose tests using recombinant prion protein, genetically modified cultured neurons, and transgenic mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.