Abstract

The preforming quality of carbon fiber plain-woven thermoset prepreg (CFPWTP) is critical to the performance of composite aerospace parts. The deformation ability of the CFPWTP material during preforming is affected by both the fabric woven structure and the resin viscosity, which is different from the dry textile material. Incorrect temperature parameters can enlarge the resin’s viscosity, and high viscosity can inhibit fiber deformation and cause defects. This study proposes an equivalent continuum mechanics model considering its temperature–force behavior. Picture frame tests and axial tensile tests at 15 °C, 30 °C, and 45 °C are conducted to obtain the temperature–stress–strain constitutional equations. By Taylor’s expansion formula and surface fitting method, the constitutive modulus of the material is obtained. Consequently, a saddle-shaped forming simulation is carried out, which is later validated by experiments. Results show that the accuracy of the predicted model is high, with 0.9% of width error and 5.1% of length error separately. Besides, the predicted wrinkles are consistent with the test in fold position and in deformation trend under different temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.