Abstract

This paper briefly describes a programming language, its implementation on a microprocessor via a compiler and link-assembler, and the mechanically checked proof of the correctness of the implementation. The programming language, called Piton, is a high-level assembly language designed for verified applications and as the target language for high-level language compilers. It provides executeonly programs, recursive subroutine call and return, stack based parameter passing, local variables, global variables and arrays, a user-visible stack for intermediate results, and seven abstract data types including integers, data addresses, program addresses and subroutine names. Piton is formally specified by an interpreter written for it in the computational logic of Boyer and Moore. Piton has been implemented on the FM8502, a general purpose microprocessor whose gate-level design has been mechanically proved to implement its machine code interpreter. The FM8502 implementation of Piton is via a function in the Boyer-Moore logic which maps a Piton initial state into an FM8502 binary core image. The compiler and link-assembler are both defined as functions in the logic. The implementation requires approximately 36K bytes and 1400 lines of prettyprinted source code in the Pure Lisp-like syntax of the logic. The implementation has been mechanically proved correct. In particular, if a Piton state can be run to completion without error, then the final values of all the global data structures can be ascertained from an inspection of an FM8502 core image obtained by running the core image produced by the compiler and link-assembler. Thus, verified Piton programs running on FM8502 can be thought of as having been verified down to the gate level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call