Abstract

Controlled manipulation, such as isolation, positioning, and trapping of cells, is important in basic biological research and clinical diagnostics. Micro/nanotechnologies have been enabling more effective and efficient cell trapping than possible with conventional platforms. Currently available micro/nanoscale methods for cell trapping, however, still lack flexibility in precisely controlling the number of trapped cells. We exploited the large compliance of elastomers to create an array of cell-trapping microstructures, whose dimensions can be mechanically modulated by inducing uniformly distributed strain via application of external force on the chip. The device consists of two elastomer polydimethylsiloxane (PDMS) sheets, one of which bears dam-like, cup-shaped geometries to physically capture cells. The mechanical modulation is used to tune the characteristics of cell trapping to capture a predetermined number of cells, from single cells to multiple cells. Thus, enhanced utility and flexibility for practical applications can be attained, as demonstrated by tunable trapping of MCF-7 cells, a human breast cancer cell line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call