Abstract
AbstractIon‐conductive elastomers capable of damping can significantly mitigate the interference caused by mechanical noise during data acquisition in wearable and biomedical devices. However, currently available damping elastomers often lack robust mechanical properties and have a narrow temperature range for effective damping. Here, precise modulation of weak to strong ion‐dipole interactions plays a crucial role in bolstering network stability and tuning the relaxation behavior of supramolecular ion‐conductive elastomers (SICEs). The SICEs exhibit impressive mechanical properties, including a modulus of 13.2 MPa, a toughness of 65.6 MJ m−3, and a fracture energy of 74.9 kJ m−2. Additionally, they demonstrate remarkable damping capabilities, with a damping capacity of 91.2% and a peak tan δ of 1.11. Furthermore, the entropy‐driven rearrangement of ion‐dipole interactions ensures the damping properties of the SICE remain stable even at elevated temperatures (18–200 °C, with tan δ > 0.3), making it the most thermally resistant damping elastomer reported to date. Moreover, the SICE proves effective in filtering out various noises during physiological signal detection and strain sensing, highlighting its vast potential in flexible electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.