Abstract

Emerging optical functional imaging and optogenetics are among the most promising approaches in neuroscience to study neuronal circuits. Combining both methods into a single implantable device enables all-optical neural interrogation with immediate applications in freely-behaving animal studies. In this paper, we demonstrate such a device capable of optical neural recording and stimulation over large cortical areas. This implantable surface device exploits lens-less computational imaging and a novel packaging scheme to achieve an ultra-thin (250μm-thick), mechanically flexible form factor. The core of this device is a custom-designed CMOS integrated circuit containing a 160×160 array of time-gated single-photon avalanche photodiodes (SPAD) for low-light intensity imaging and an interspersed array of dual-color (blue and green) flip-chip bonded micro-LED (μLED) as light sources. We achieved 60μm lateral imaging resolution and 0.2mm3 volumetric precision for optogenetics over a 5.4×5.4mm2 field of view (FoV). The device achieves a 125-fps frame-rate and consumes 40 mW of total power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call