Abstract
In this paper the authors show that fractional-order force-flux relations are obtained considering the flux of a viscous fluid across an elastic porous media. Indeed the one-dimensional fluid mass transport in an unbounded porous media with power-law variation of geometrical and physical properties yields a fractional-order relation among the ingoing flux and the applied pressure to the control section. As a power-law decay of the physical properties from the control section is considered, then the flux is related to a Caputo fractional derivative of the pressure of order 0⩽β≤1. If, instead, the physical properties of the media show a power-law increase from the control section, then flux is related to a fractional-order integral of order 0⩽β≤1. These two different behaviors may be related to different states of the mass flow across the porous media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.