Abstract

We developed a snake rescue robot basing on the proposed mechanical intelligence. The mechanical intelligence is designed to avoid obstacles and to realize desired motions when the robot is navigated by a remote force feedback steering wheel interface. We use free joints to connect modules of the snake robot. Modules can freely turn according to their neighbors. An obstacle-avoiding wheel is mounted on the head of the snake robot. When the head encounters an obstacle, the wheel touches it first to transfer the sliding friction between the wheel and the obstacle into rolling friction, so that the head avoid the obstacle easily. A metal wire is used to link gears mounted on both sides of each module. When any part of the snake robot's body encounters an obstacle, the wire length of each side varies automatically to change the robot's body shape, so that the snake robot avoids the obstacle. The wire length of each side can also be adjusted by a motor. By adjusting the wire length of each side, the snake robot can move in the desired direction. The mechanical intelligence based snake rescue robot has light body, low cost and low computation cost. Experiment results show that the designed mechanical intelligence is effective in realizing desired robot motions together with the force feedback steering wheel interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.