Abstract
The Chu’s limit imposes a significant challenge for traditional antennas operating at extremely low frequencies, as they require a large size due to the long operating wavelength, thus limiting their applicability. To reduce the antenna size, this paper proposes a vibrating beam system for long-wave communication that leverages the inverse piezoelectric effect, vibration theory, and Maxwell’s equations. A prototype utilizing beam structures is developed and examined experimentally. Furthermore, the frequency modulation of the vibrating beam system and signal transfer protocol are investigated in detail. The experimental results demonstrate that exciting different vibration modes of the vibrating beam system leads to varied electromagnetic signals in specific rules, enabling long-wave communications and ensuring confidentiality. This work offers valuable insights into the potential of local information exchange among close-range platforms. It also highlights the promising approach of integrating piezoelectric material and magnets within the vibrating beam system, showcasing their potential towards practical applications in long-wave communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.