Abstract

This paper presents detailed analysis of large-scale peculiar motions derived from a sample of ~ 700 X-ray clusters and cosmic microwave background (CMB) data obtained with WMAP. We use the kinematic Sunyaev-Zeldovich (KSZ) effect combining it into a cumulative statistic which preserves the bulk motion component with the noise integrated down. Such statistic is the dipole of CMB temperature fluctuations evaluated over the pixels of the cluster catalog (Kashlinsky & Atrio-Barandela 2000). To remove the cosmological CMB fluctuations the maps are Wiener-filtered in each of the eight WMAP channels (Q, V, W) which have negligible foreground component. Our findings are as follows: The thermal SZ (TSZ) component of the clusters is described well by the Navarro-Frenk-White profile expected if the hot gas traces the dark matter in the cluster potential wells. Such gas has X-ray temperature decreasing rapidly towards the cluster outskirts, which we demonstrate results in the decrease of the TSZ component as the aperture is increased to encompass the cluster outskirts. We then detect a statistically significant dipole in the CMB pixels at cluster positions. Arising exclusively at the cluster pixels this dipole cannot originate from the foreground or instrument noise emissions and must be produced by the CMB photons which interacted with the hot intracluster gas via the SZ effect. The dipole remains as the monopole component, due to the TSZ effect, vanishes within the small statistical noise out to the maximal aperture where we still detect the TSZ component. We demonstrate with simulations that the mask and cross-talk effects are small for our catalog and contribute negligibly to the measurements. The measured dipole thus arises from the KSZ effect produced by the coherent large scale bulk flow motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.