Abstract

PurposeThis paper aims to solve the problem of free-form tubes’ machining errors which are caused by their complex geometries and material properties.Design/methodology/approachIn this paper, the authors propose a multi-view vision-based method for measuring free-form tubes. The authors apply photogrammetry theory to construct the initial model and then optimize the model using an energy function. The energy function is based on the features of the image of the tube. Solving the energy function allows to use the gray features of the images to reconstruct centerline point clouds and thus obtain the pertinent geometric parameters.FindingsAccording to the experiments, the measurement process takes less than 2 min and the precision of the proposed system is 0.2 mm. The authors used simple operations to carry out the measurements, and the process is fully automatic.Originality/valueThis paper proposes a method for measuring free-form tubes based on multi-view vision, which has not been attempted to the best of authors’ knowledge. This method differs from traditional multi-view vision measurement methods, because it does not rely on the data of the design model of the tube. The application of the energy function also avoids the problem of matching corresponding points and thus simplifying the calculation and improving its stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.