Abstract

The proposed approach achieves the reliable accuracy of synthetic aperture radar-automatic target recognition (SAR-ATR) with a simulation database. The simulation images of targets-of-interest are generated from inverse SAR using high-frequency techniques. A measurement image translation-automatic target recognition (MIT-ATR) uses two deep learning networks. The unique feature of the MIT-ATR is that the measurement images are translated to the simulation-like images by cycle generative adversarial network (CycleGAN). CycleGAN does not need to have a dataset of paired images between the measurement and simulation images. The generated simulation-like images are used as the inputs of the Visual Geometry Group (VGG) network. The VGG network is trained on a simulation database with a softmax layer of multi-classes. Five classes, including a T-72 tank, are considered in the numerical experiments. The images of each class are simulated at all azimuth angles, but the elevation angles range from 6° to 30°. The accuracy of the proposed approach is 63% better than that of the traditional method with only the VGG network. The simulation database could definitely supplement the lack of measurement data. The accuracy of MIT-ATR is properly handled by CycleGAN and the VGG network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.