Abstract
Partially-observed network data collected by link-tracing based sampling methods is often being studied to obtain the characteristics of a large complex network. However, little attention has been paid to sampling from directed networks such as WWW and Peer-to-Peer networks. In this paper, we propose a novel two-step (sampling/estimation) framework to measure nodal characteristics which can be defined by an average target function in an arbitrary directed network. To this end, we propose a personalized PageRank-based algorithm to visit and sample nodes. This algorithm only uses already visited nodes as local information without any prior knowledge about the latent structure of the network. Moreover, we introduce a new estimator based on the approximate importance sampling to estimate average target functions. The proposed estimator utilizes calculated PageRank value of each sampled node as an approximation for the exact visiting probability. To the best of our knowledge, this is the first study on correcting the bias of a sampling method by re-weighting of measured values that considers the effect of approximation of visiting probabilities. Comprehensive theoretical and empirical analysis of the estimator demonstrate that it is asymptotically unbiased even in situations where stationary distribution of PageRank is poorly approximated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.