Abstract

The assessment of prevalence on regional levels is an important element of public health reporting. Since regional prevalence is rarely collected in registers, corresponding figures are often estimated via small area estimation using suitable health data. However, such data are frequently subject to uncertainty as values have been estimated from surveys. In that case, the method for prevalence estimation must explicitly account for data uncertainty to allow for reliable results. This can be achieved via measurement error models that introduce distribution assumptions on the noisy data. However, these methods usually require target and explanatory variable errors to be independent. This does not hold when data for both have been estimated from the same survey, which is sometimes the case in official statistics. If not accounted for, prevalence estimates can be severely biased. We propose a new measurement error model for regional prevalence estimation that is suitable for settings where target and explanatory variable errors are dependent. We derive empirical best predictors and demonstrate mean-squared error estimation. A maximum likelihood approach for model parameter estimation is presented. Simulation experiments are conducted to prove the effectiveness of the method. An application to regional hypertension prevalence estimation in Germany is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.