Abstract
Dense, unmanaged IEEE 802.11 deployments tempt saboteurs into launching jamming attacks by injecting malicious interference. Nowadays, jammers can be portable devices that transmit intermittently at low power in order to conserve energy. In this paper, we first conduct extensive experiments on an indoor 802.11 network to assess the ability of two physical-layer functions, rate adaptation and power control, in mitigating jamming. In the presence of a jammer, we find that: 1) the use of popular rate adaptation algorithms can significantly degrade network performance; and 2) appropriate tuning of the carrier sensing threshold allows a transmitter to send packets even when being jammed and enables a receiver to capture the desired signal. Based on our findings, we build ARES, an Anti-jamming REinforcement System, which tunes the parameters of rate adaptation and power control to improve the performance in the presence of jammers. ARES ensures that operations under benign conditions are unaffected. To demonstrate the effectiveness and generality of ARES, we evaluate it in three wireless test-beds: 1) an 802.11n WLAN with MIMO nodes; 2) an 802.11a/g mesh network with mobile jammers; and 3) an 802.11a WLAN with TCP traffic. We observe that ARES improves the network throughput across all test-beds by up to 150%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.