Abstract
In this paper we develop a measure-theoretic method to treat problems in hypergraph theory. Our central theorem is a correspondence principle between three objects: an increasing hypergraph sequence, a measurable set in an ultraproduct space and a measurable set in a finite dimensional Lebesgue space. Using this correspondence principle we build up the theory of dense hypergraphs from scratch. Along these lines we give new proofs for the Hypergraph Removal Lemma, the Hypergraph Regularity Lemma, the Counting Lemma and the Testability of Hereditary Hypergraph Properties. We prove various new results including a strengthening of the Regularity Lemma and an Inverse Counting Lemma. We also prove the equivalence of various notions for convergence of hypergraphs and we construct limit objects for such sequences. We prove that the limit objects are unique up to a certain family of measure preserving transformations. As our main tool we study the integral and measure theory on the ultraproduct of finite measure spaces which is interesting on its own right.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.