Abstract

Power line harmonic noise generated by power lines during the seismic data acquisition in land and marine seismic surveys generally appears as a single frequency with 50/60Hz (or multiples of these frequencies) and contaminates seismic data leading to complicate the identification of fine details in the data. Commonly applied method during seismic data processing to remove the harmonic noise is classical notch filter (or very narrow band-stop filter), however, it also attenuates all recorded data around the notch frequencies and results in a complete loss of available information which corresponds to fine details in the seismic data.In this study, we introduce an application of the algorithm of iterative trimmed and truncated mean filter method (ITTM) to remove the harmonic noise from seismic data, and here, we name the method as local ITTM (LITTM) since we applied it to the seismic data locally in spectral domain. In this method, an optimal value is iteratively searched depending on a threshold value by trimming and truncating process for the spectral amplitude samples within the specified spectral window. Therefore, the LITTM filter converges to the median, but, there is no need to sort the data as in the case of conventional median filters. On the other hand, the LITTM filtering process doesn't require any reference signal or a precise estimate of the fundamental frequency of the harmonic noise, and only approximate frequency band of the noise within the amplitude spectra is considered. The only required parameter of the method is the width of this frequency band in the spectral domain.The LITTM filter is first applied to synthetic data and then we analyze a real marine dataset to compare the quality of the output after removing the power line noise by classical notch, median and proposed LITTM filters. We observe that the power line harmonic noise is completely filtered out by LITTM filter, and unlike the conventional notch filter, without any damage on the available frequencies around the notch frequency band. It also provides a more balanced amplitude spectrum since it does not produce amplitude notches in the spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.