Abstract
Multilayer neural networks are among the most powerful models in machine learning, yet the fundamental reasons for this success defy mathematical understanding. Learning a neural network requires optimizing a nonconvex high-dimensional objective (risk function), a problem that is usually attacked using stochastic gradient descent (SGD). Does SGD converge to a global optimum of the risk or only to a local optimum? In the former case, does this happen because local minima are absent or because SGD somehow avoids them? In the latter, why do local minima reached by SGD have good generalization properties? In this paper, we consider a simple case, namely two-layer neural networks, and prove that-in a suitable scaling limit-SGD dynamics is captured by a certain nonlinear partial differential equation (PDE) that we call distributional dynamics (DD). We then consider several specific examples and show how DD can be used to prove convergence of SGD to networks with nearly ideal generalization error. This description allows for "averaging out" some of the complexities of the landscape of neural networks and can be used to prove a general convergence result for noisy SGD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.