Abstract

The paper combines two major contemporary systems and control methodologies to obtain a unique e-Nash equilibrium for optimal execution problems within the stock market, namely Mean Field Game (MFG) theory and Hybrid Optimal Control (HOC) theory. Following standard financial models, the stock market is studied in this paper as a large population non-cooperative game where each trader has stochastic linear dynamics with quadratic costs. We consider the case where there exists one major trader with significant influence on market movements together with a large number of minor traders (within two subpopulations), each with individually asymptotically negligible effect on the market. The traders are coupled in their dynamics and cost functions by the market's average trading rate (a component of the system mean field) and the hybrid feature enters via the indexing of the cessation of trading by one or both subpopulations of minor traders by discrete states. Optimal stopping time strategies together with best response trading policies for all traders are established with respect to their individual cost criteria by an application of LQG HOC theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.