Abstract
As an important part of cyberphysical systems (CPSs), multiple aerial drone systems are widely used in various scenarios, and research scenarios are becoming increasingly complex. However, planning strategies for the formation flying of aerial swarms in dense environments typically lack the capability of large-scale breakthrough because the amount of communication and computation required for swarm control grows exponentially with scale. To address this deficiency, we present a mean-field game (MFG) control-based method that ensures collision-free trajectory generation for the formation flight of a large-scale swarm. In this paper, two types of differentiable mean-field terms are proposed to quantify the overall similarity distance between large-scale 3-D formations and the potential energy value of dense 3-D obstacles, respectively. We then formulate these two terms into a mean-field game control framework, which minimizes energy cost, formation similarity error, and collision penalty under the dynamical constraints, so as to achieve spatiotemporal planning for the desired trajectory. The classical task of a distributed large-scale aerial swarm system is simulated by numerical examples, and the feasibility and effectiveness of our method are verified and analyzed. The comparison with baseline methods shows the advanced nature of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.