Abstract

This paper presents a generative model based approach to deal with occlusions in vision problems which can be formulated as MAP-estimation problems. The approach is generic and targets applications in diverse domains like model-based object recognition, depth-from-stereo and image registration. It relies on a probabilistic imaging model, in which visible regions and occlusions are generated by two separate processes. The partitioning into visible and occluded regions is made explicit by the introduction of an hidden binary visibility map, which, to account for the coherent nature of occlusions, is modelled as a Markov Random Field. Inference is made tractable by a mean field EMalgorithm, which alternates between estimation of visibility and optimisation of model parameters. We demonstrate the effectiveness of the approach with two examples. First, in a N-view stereo experiment, we compute a dense depth map of a scene which is contaminated by multiple occluding objects. Finally, in a 2D-face recognition experiment, we try to identify people from partially occluded facial images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.