Abstract

We study a class of discrete-time stochastic systems composed of a large number of N interacting objects, which are classified in a finite number of classes. The behavior of the objects is controlled by a central decision-maker as follows. At each stage, once the configuration of the system is observed, the controller takes a decision; then a cost is incurred and there is a positive probability the process stops, otherwise the objects move randomly among the classes according to a transition probability. That is, with positive probability, the system is absorbed by a configuration that represents the death of the system, and there it will remain without incurring cost. Due to the large number of objects, the control problem is studied according to the mean field theory. Thus, instead of analyzing a single object, we focus on the proportions of objects occupying each class, and then we study the limit as N goes to infinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.